142 research outputs found

    Efficient Three-stage Auction Schemes for Cloudlets Deployment in Wireless Access Network

    Full text link
    Cloudlet deployment and resource allocation for mobile users (MUs) have been extensively studied in existing works for computation resource scarcity. However, most of them failed to jointly consider the two techniques together, and the selfishness of cloudlet and access point (AP) are ignored. Inspired by the group-buying mechanism, this paper proposes three-stage auction schemes by combining cloudlet placement and resource assignment, to improve the social welfare subject to the economic properties. We first divide all MUs into some small groups according to the associated APs. Then the MUs in same group can trade with cloudlets in a group-buying way through the APs. Finally, the MUs pay for the cloudlets if they are the winners in the auction scheme. We prove that our auction schemes can work in polynomial time. We also provide the proofs for economic properties in theory. For the purpose of performance comparison, we compare the proposed schemes with HAF, which is a centralized cloudlet placement scheme without auction. Numerical results confirm the correctness and efficiency of the proposed schemes.Comment: 22 pages,12 figures, Accepted by Wireless Network

    The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

    Get PDF
    Recovering keys ranked in very deep candidate space efficiently is a very important but challenging issue in Side-Channel Attacks (SCAs). State-of-the-art Collision Optimized Divide-and-Conquer Attacks (CODCAs) extract collision information from a collision attack to optimize the key recovery of a divide-and-conquer attack, and transform the very huge guessing space to a much smaller collision space. However, the inefficient collision detection makes them time-consuming. The very limited collisions exploited and large performance difference between the collision attack and the divide-and-conquer attack in CODCAs also prevent their application in much larger spaces. In this paper, we propose a Minkowski Distance enhanced Collision Attack (MDCA) with performance closer to Template Attack (TA) compared to traditional Correlation-Enhanced Collision Attack (CECA), thus making the optimization more practical and meaningful. Next, we build a more advanced CODCA named Full-Collision Chain (FCC) from TA and MDCA to exploit all collisions. Moreover, to minimize the thresholds while guaranteeing a high success probability of key recovery, we propose a fault-tolerant scheme to optimize FCC. The full-key is divided into several big ``blocks\u27\u27, on which a Fault-Tolerant Vector (FTV) is exploited to flexibly adjust its chain space. Finally, guessing theory is exploited to optimize thresholds determination and search orders of sub-keys. Experimental results show that FCC notably outperforms the existing CODCAs

    Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

    Get PDF
    Several combined attacks have shown promising results in recovering cryptographic keys by introducing collision information into divide-and-conquer attacks to transform a part of the best key candidates within given thresholds into a much smaller collision space. However, these Collision-Optimized Divide-and-Conquer Attacks (CODCAs) uniformly demarcate the thresholds for all sub-keys, which is unreasonable. Moreover, the inadequate exploitation of collision information and backward fault tolerance mechanisms of CODCAs also lead to low attack efficiency. Finally, existing CODCAs mainly focus on improving collision detection algorithms but lack theoretical basis. We exploit Correlation-Enhanced Collision Attack (CECA) to optimize Template Attack (TA). To overcome the above-mentioned problems, we first introduce guessing theory into TA to enable the quick estimation of success probability and the corresponding complexity of key recovery. Next, a novel Multiple-Differential mechanism for CODCAs (MD-CODCA) is proposed. The first two differential mechanisms construct collision chains satisfying the given number of collisions from several sub-keys with the fewest candidates under a fixed probability provided by guessing theory, then exploit them to vote for the remaining sub-keys. This guarantees that the number of remaining chains is minimal, and makes MD-CODCA suitable for very high thresholds. Our third differential mechanism simply divides the key into several large non-overlapping ``blocks\u27\u27 to further exploit intra-block collisions from the remaining candidates and properly ignore the inter-block collisions, thus facilitating the latter key enumeration. The experimental results show that MD-CODCA significantly reduces the candidate space and lowers the complexity of collision detection, without considerably reducing the success probability of attacks

    Submarine groundwater discharge in Dongshan Bay, China: A master regulator of nutrients in spring and potential national significance of small bays

    Get PDF
    Despite over 90% of China’s coastal bays have an area less than 500 km2, the geochemical effects of SGD on those ecosystems are ambiguous. Based on mapping and time-series observations of Ra isotopes and nutrients, a case study of small bays (<500 km2), we revealed that submarine groundwater discharge (SGD) predominately regulated the distribution of nutrients and fueled algal growth in Dongshan Bay, China. On the bay-wide scale, the SGD rate was estimated to be 0.048 ± 0.022 m day−1 and contributed over 95% of the nutrients. At the time-series site where the bay-wide highest Ra activities in the bottom water marked an SGD hotspot with an average rate an order of magnitude greater, the maximum chlorophyll concentration co-occurred, suggesting that SGD may support the algal bloom. The ever-most significant positive correlations between 228Ra and nutrients throughout the water column (P< 0.01, R2 > 0.90 except for soluble reactive phosphorus in the surface) suggested the predominance of SGD in controlling nutrient distribution in the bay. Extrapolated to a national scale, the SGD-carried dissolved inorganic nitrogen flux in small bays was twice as much as those in large bays (>2,000 km2). Thus, the SGD-carried nutrients in small bays merit immediate attention in environmental monitoring and management
    • …
    corecore